Solutions to Problems 3: The Directional Derivative

1 Define the functions
i. $f: \mathbb{R}^{2} \rightarrow \mathbb{R}, \mathbf{x} \mapsto x(x+y)$ and
ii. $g: \mathbb{R}^{2} \rightarrow \mathbb{R}, \mathbf{x} \mapsto y(x-y)$.

Find the directional derivatives of f and g at $\mathbf{a}=(1,2)^{T}$ in the direction $\mathbf{v}=(2,-1)^{T} / \sqrt{5}$.

Solution First note that

$$
\mathbf{a}+t \mathbf{v}=\binom{1+2 t / \sqrt{5}}{2-t / \sqrt{5}}
$$

So

$$
f(\mathbf{a}+t \mathbf{v})=\left(1+\frac{2 t}{\sqrt{5}}\right)\left(3+\frac{t}{\sqrt{5}}\right)=3+\frac{7}{\sqrt{5}} t+\frac{2}{5} t^{2}
$$

Thus $f(\mathbf{a})=3$ and

$$
\frac{f(\mathbf{a}+t \mathbf{v})-f(\mathbf{a})}{t}=\frac{7}{\sqrt{5}}+\frac{2}{5} t \rightarrow \frac{7}{\sqrt{5}}
$$

as $t \rightarrow 0$. Since the limit exists the directional derivative exists and satisfies $d_{\mathbf{v}} f(\mathbf{a})=7 / \sqrt{5}$.

For g we have

$$
g(\mathbf{a}+t \mathbf{v})=\left(2-\frac{t}{\sqrt{5}}\right)\left(-1+\frac{3 t}{\sqrt{5}}\right)=-2+\frac{7}{\sqrt{5}} t-\frac{3}{5} t^{2}
$$

Thus $g(\mathbf{a})=-2$ and

$$
\frac{g(\mathbf{a}+t \mathbf{v})-g(\mathbf{a})}{t}=\frac{7}{\sqrt{5}}-\frac{3}{5} t \rightarrow \frac{7}{\sqrt{5}},
$$

as $t \rightarrow 0$. Since the limit exists the directional derivative exists and satisfies $d_{\mathbf{v}} g(\mathbf{a})=7 / \sqrt{5}$.
2. Find the directional derivative of $f: \mathbb{R}^{2} \rightarrow \mathbb{R}, \mathbf{x} \rightarrow x^{2} y$ at $\mathbf{a}=(2,1)^{T}$ in the direction of the unit vector $\mathbf{v}=(1,-1)^{T} / \sqrt{2}$.

Solution First note that

$$
\mathbf{a}+t \mathbf{v}=\binom{2+t / \sqrt{2}}{1-t / \sqrt{2}}
$$

so

$$
f(\mathbf{a}+t \mathbf{v})=\left(2+\frac{t}{\sqrt{2}}\right)^{2}\left(1-\frac{t}{\sqrt{2}}\right)=4-\frac{3}{2} t^{2}-\frac{1}{2 \sqrt{2}} t^{3}
$$

This leads to the existence of the directional derivative and it's value $d_{\mathbf{v}} f(\mathbf{a})=0$.
3. Define the function $h: \mathbb{R}^{3} \rightarrow \mathbb{R}$, by $\mathbf{x} \rightarrow x y+y z+x z$. By verifying the definition, find the directional derivative of h at $\mathbf{a}=(1,2,3)^{T}$ in the direction of the unit vector $\mathbf{v}=(3,2,1)^{T} / \sqrt{14}$.

Solution First note that

$$
\mathbf{a}+\mathbf{v} t=\left(\begin{array}{c}
1+3 t / \sqrt{14} \\
2+2 t / \sqrt{14} \\
3+t / \sqrt{14}
\end{array}\right) .
$$

So

$$
\begin{aligned}
h(\mathbf{a}+\mathbf{v} t)= & \left(1+3 \frac{t}{\sqrt{14}}\right)\left(2+2 \frac{t}{\sqrt{14}}\right)+\left(2+2 \frac{t}{\sqrt{14}}\right)\left(3+\frac{t}{\sqrt{14}}\right) \\
& +\left(1+3 \frac{t}{\sqrt{14}}\right)\left(3+\frac{t}{\sqrt{14}}\right) \\
= & 2+8 \frac{t}{\sqrt{14}}+6 \frac{t^{2}}{14}+6+8 \frac{t}{\sqrt{14}}+2 \frac{t^{2}}{14}+3+10 \frac{t}{\sqrt{14}}+3 \frac{t^{2}}{14} \\
= & 11+26 \frac{t}{\sqrt{14}}+11 \frac{t^{2}}{14} .
\end{aligned}
$$

Then

$$
\begin{aligned}
\frac{h(\mathbf{a}+\mathbf{v} t)-h(\mathbf{a})}{t} & =\frac{1}{t}\left(26 \frac{t}{\sqrt{14}}+11 \frac{t^{2}}{14}\right)=26 \frac{1}{\sqrt{14}}+11 \frac{t}{14} \\
& \rightarrow \frac{26}{\sqrt{14}}
\end{aligned}
$$

as $t \rightarrow 0$. Since the limit exists the directional derivative exists and satisfies $d_{\mathbf{v}} h(\mathbf{a})=26 / \sqrt{14}$.
4. Define the function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$, by $\mathbf{x} \rightarrow x y^{2} z$. By verifying the definition, find the directional derivative of \mathbf{f} at $\mathbf{a}=(1,3,-2)^{T}$ in the direction of the unit vector $\mathbf{v}=(-1,1,-2)^{T} / \sqrt{6}$.

Solution Firstly,

$$
\mathbf{a}+t \mathbf{v}=\left(\begin{array}{c}
1-t / \sqrt{6} \\
3+t / \sqrt{6} \\
-2-2 t / \sqrt{6}
\end{array}\right) .
$$

Then

$$
\begin{aligned}
f(\mathbf{a}+t \mathbf{v}) & =\left(1-\frac{t}{\sqrt{6}}\right)\left(3+\frac{t}{\sqrt{6}}\right)^{2}\left(-2-2 \frac{t}{\sqrt{6}}\right) \\
& =-18-2 t \sqrt{6}+\frac{8}{3} t^{2}+\frac{1}{3} t^{3} \sqrt{6}+\frac{1}{18} t^{4}
\end{aligned}
$$

You do not need all this detail, instead write it as $-18-2 t \sqrt{6}+O\left(t^{2}\right)$, where the $O\left(t^{2}\right)$ notation represents the sum of all terms with t^{2} or higher powers.

This will lead us to $d_{\mathbf{v}} f(\mathbf{a})=-2 \sqrt{6}$.
5. Define the function $\mathbf{f}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ by

$$
\mathbf{x} \rightarrow\binom{x y}{y z}
$$

where $\mathbf{x}=(x, y, z)^{T}$. By verifying the definition, find the directional derivative of \mathbf{f} at $\mathbf{a}=(1,3,-2)^{T}$ in the direction of the unit vector $\mathbf{v}=(-1,1,-2)^{T} / \sqrt{6}$.
Do not look at the component functions separately.
Solution Consider, for $t \neq 0$,

$$
\begin{aligned}
\frac{\mathbf{f}(\mathbf{a}+t \mathbf{v})-\mathbf{f}(\mathbf{a})}{t} & =\frac{1}{t}\left\{\binom{(1-t / \sqrt{6})(3+t / \sqrt{6})}{(3+t / \sqrt{6})(-2-2 t / \sqrt{6})}-\binom{3}{-6}\right\} \\
& =\frac{1}{t}\binom{-2 t / \sqrt{6}-t^{2} / 6}{-8 t / \sqrt{6}-2 t^{2} / 6}=\binom{-2 / \sqrt{6}-t / 6}{-8 / \sqrt{6}-2 t / 6} \\
& \rightarrow\binom{-2 / \sqrt{6}}{-8 / \sqrt{6}} \quad \text { as } t \rightarrow 0, \\
& =-\sqrt{\frac{2}{3}}\binom{1}{4} .
\end{aligned}
$$

Since the limit exists the directional derivative exists and satisfies

$$
d_{\mathbf{v}} \mathbf{f}(\mathbf{a})=-\sqrt{\frac{2}{3}}\binom{1}{4} .
$$

6 Define the function $\mathbf{f}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by

$$
\mathbf{f}(\mathbf{x})=\binom{x(x+y)}{y(x-y)} .
$$

Find the directional derivative of \mathbf{f} at $\mathbf{a}=(1,2)^{T}$ in the direction $\mathbf{v}=$ $(2,-1)^{T} / \sqrt{5}$.
Hint Notice the difference in wording between this question and the previous one; here I do not ask you to verify the definition.

Solution Use the result that the directional derivative of a vector-valued function exists iff the directional derivatives of it's component functions exist and satisfy $d_{\mathbf{v}} \mathbf{f}(\mathbf{a})^{i}=d_{\mathbf{v}} f^{i}(\mathbf{a})$. In this case the component functions have been seen in Question 1, where their directional derivatives were shown to exist and thus $d_{\mathbf{v}} \mathbf{f}(\mathbf{a})$ exists. Further,

$$
d_{\mathbf{v}} \mathbf{f}(\mathbf{a})=\binom{d_{\mathbf{v}} f^{1}(\mathbf{a})}{d_{\mathbf{v}} f^{2}(\mathbf{a})}=\binom{7 / \sqrt{5}}{7 / \sqrt{5}} .
$$

7 Define the function $\mathrm{f}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by

$$
\mathbf{f}(\mathbf{x})=\binom{x y^{2}}{x^{2} y} .
$$

Find the directional derivative of \mathbf{f} at $\mathbf{a}=(2,1)^{T}$ in the direction $\mathbf{v}=$ $(1,-1)^{T} / \sqrt{5}$.

Solution $d_{\mathbf{v}} \mathbf{f}(\mathbf{a})$ exists iff $d_{\mathbf{v}} f^{1}(\mathbf{a})$ and $d_{\mathbf{v}} f^{2}(\mathbf{a})$. Here $f^{1}(\mathbf{x})=x y^{2}$ was an example in lectures where we found $d_{\mathbf{v}} f^{1}(\mathbf{a})=-3 / \sqrt{2}$. And $f^{2}(\mathbf{x})=x^{2} y$ was the subject of Question 2 above where we found that $d_{\mathbf{v}} f^{2}(\mathbf{a})=0$. Hence

$$
d_{\mathbf{v}} \mathbf{f}(\mathbf{a})=\binom{d_{\mathbf{v}} f^{1}(\mathbf{a})}{d_{\mathbf{v}} f^{2}(\mathbf{a})}=\frac{1}{\sqrt{2}}\binom{-3}{0} .
$$

i. Let $\mathbf{c} \in \mathbb{R}^{n}$ be fixed. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, \mathbf{x} \mapsto \mathbf{c} \bullet \mathbf{x}$. Show that

$$
d_{\mathbf{v}} f(\mathbf{a})=f(\mathbf{v})
$$

for all $\mathbf{a}, \mathbf{v} \in \mathbb{R}^{n}$.
ii. Let $M \in M_{m, n}(\mathbb{R})$ and $\mathbf{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, \mathbf{x} \mapsto M \mathbf{x}$. Show that

$$
d_{\mathbf{v}} \mathbf{f}(\mathbf{a})=\mathbf{f}(\mathbf{v})
$$

for all $\mathbf{a}, \mathbf{v} \in \mathbb{R}^{n}$.
iii. Can you generalise these results? I.e. of what type of function are $\mathbf{x} \mapsto \mathbf{c} \bullet \mathbf{x}$ and $\mathbf{x} \mapsto M \mathbf{x}$ examples?

Solution i. Let $\mathbf{a}, \mathbf{v} \in \mathbb{R}^{n}$ be given. Consider

$$
\frac{\mathbf{f}(\mathbf{a}+t \mathbf{v})-\mathbf{f}(\mathbf{a})}{t}=\frac{1}{t}(\mathbf{c} \bullet(\mathbf{a}+t \mathbf{v})-\mathbf{c} \bullet \mathbf{a})=\frac{1}{t}(\mathbf{c} \bullet \mathbf{a}+t \mathbf{c} \bullet \mathbf{v}-\mathbf{c} \bullet \mathbf{a})
$$ since the scalar product is distributive

$$
=\mathbf{c} \bullet \mathbf{v}=\mathbf{f}(\mathbf{v}),
$$

for all $t \neq 0$. Hence

$$
\lim _{t \rightarrow 0} \frac{\mathbf{f}(\mathbf{a}+t \mathbf{v})-\mathbf{f}(\mathbf{a})}{t}=\mathbf{f}(\mathbf{v}) .
$$

That the limit exists means that the directional derivative exists. That the limit is $\mathbf{f}(\mathbf{v})$ means that $d_{\mathbf{v}} \mathbf{f}(\mathbf{a})=\mathbf{f}(\mathbf{v})$.
ii. Let $\mathbf{a}, \mathbf{v} \in \mathbb{R}^{n}$ be given. Consider

$$
\begin{aligned}
\frac{\mathbf{f}(\mathbf{a}+t \mathbf{v})-\mathbf{f}(\mathbf{a})}{t}= & \frac{1}{t}(M(\mathbf{a}+t \mathbf{v})-M \mathbf{a})=\frac{1}{t}(M \mathbf{a}+t M \mathbf{v}-M \mathbf{a}) \\
& \quad \text { since matrix multiplication is distributive } \\
= & M \mathbf{v}=\mathbf{f}(\mathbf{v})
\end{aligned}
$$

for all $t \neq 0$. Hence

$$
\lim _{t \rightarrow 0} \frac{\mathbf{f}(\mathbf{a}+t \mathbf{v})-\mathbf{f}(\mathbf{a})}{t}=\mathbf{f}(\mathbf{v}) .
$$

That the limit exists means that the directional derivative exists. That the limit is $\mathbf{f}(\mathbf{v})$ means that $d_{\mathbf{v}} \mathbf{f}(\mathbf{a})=\mathbf{f}(\mathbf{v})$.
iii. Both $\mathbf{x} \mapsto \mathbf{c} \bullet \mathbf{x}$ and $\mathbf{x} \mapsto M \mathbf{x}$ are examples of linear functions. Let $\mathbf{L}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear function. Let $\mathbf{a}, \mathbf{v} \in \mathbb{R}^{n}$ be given. Consider

$$
\begin{aligned}
\frac{\mathbf{L}(\mathbf{a}+t \mathbf{v})-\mathbf{L}(\mathbf{a})}{t} & =\frac{\mathbf{L}(\mathbf{a})+t \mathbf{L}(\mathbf{v})-\mathbf{L}(\mathbf{a})}{t} \\
& \text { by the linearity of } \mathbf{L} \\
& =\mathbf{L}(\mathbf{v})
\end{aligned}
$$

for all $t \neq 0$. Hence

$$
\lim _{t \rightarrow 0} \frac{\mathbf{L}(\mathbf{a}+t \mathbf{v})-\mathbf{L}(\mathbf{a})}{t}=\mathbf{L}(\mathbf{v}) .
$$

That the limit exists means that the directional derivative exists. That the limit is $\mathbf{L}(\mathbf{v})$ means that $d_{\mathbf{v}} \mathbf{L}(\mathbf{a})=\mathbf{L}(\mathbf{v})$.
9. Assume for the scalar-valued function $f: U \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$ the directional derivative $d_{\mathbf{v}} f(\mathbf{a})$ exists for some $\mathbf{a}, \mathbf{v} \in \mathbb{R}^{n}$. Prove that

$$
\lim _{t \rightarrow 0} f(\mathbf{a}+t \mathbf{v})=f(\mathbf{a}) .
$$

This is yet another example of the principle that if a function is differentiable at a point then it is continuous at that point. There are no new ideas in the proof, look back at previous proofs of differentiable implies continuous.

Solution This is a proof you should recognise from earlier analysis courses. Consider
$\lim _{t \rightarrow 0}(f(\mathbf{a}+\mathbf{v} t)-f(\mathbf{a}))=\lim _{t \rightarrow 0} \frac{f(\mathbf{a}+\mathbf{v} t)-f(\mathbf{a})}{t} t=\lim _{t \rightarrow 0} \frac{f(\mathbf{a}+\mathbf{v} t)-f(\mathbf{a})}{t} \lim _{t \rightarrow 0} t$,
using the Product Rule for limits, allowable only if the two limits exist. The second limit is 0 , the first is $d_{\mathbf{v}} f(\mathbf{a})$ which exists by assumption. Hence

$$
\lim _{t \rightarrow 0}(f(\mathbf{a}+\mathbf{v} t)-f(\mathbf{a}))=d_{\mathbf{v}} f(\mathbf{a}) \times 0=0,
$$

which gives required result.
10. Define the function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ by $\mathbf{x} \rightarrow|\mathbf{x}|$.
i. Prove that f is continuous in any direction at the origin.
ii. Show that in no direction through the origin does f have a directional derivative.

This example illustrates the fact that

$$
\text { continuous in a direction } \nRightarrow \text { differentiable in that direction. }
$$

Solution i. Let v, a unit vector, be given. Then

$$
f(\mathbf{0}+t \mathbf{v})=|t \mathbf{v}|=|t||\mathbf{v}| \underset{t \rightarrow 0}{\rightarrow} 0=f(\mathbf{0}) .
$$

Hence f is continuous at $\mathbf{0}$ in the direction \mathbf{v}. Yet \mathbf{v} was arbitrary, so f is continuous in any direction at the origin.
ii. Let \mathbf{v}, a unit vector, be given. Then

$$
\frac{f(\mathbf{0}+t \mathbf{v})-f(\mathbf{0})}{t}=\frac{|t||\mathbf{v}|}{t}
$$

It is well-known that $\lim _{t \rightarrow 0}|t| / t$ does not exist; the right hand and left hand limits are different. Hence

$$
\lim _{t \rightarrow 0} \frac{f(\mathbf{0}+t \mathbf{v})-f(\mathbf{0})}{t}
$$

does not exist, i.e. f has no directional derivative at 0 in the direction of \mathbf{v}. Yet \mathbf{v} was arbitrary, so in no direction through the origin does f have a directional derivative.
11. Assume $f: U \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}, \mathbf{a} \in U$ and we have a unit vector $\mathbf{v} \in$ \mathbb{R}^{n}. Prove that if the directional derivative $d_{\mathbf{v}} f(\mathbf{a})$ exists then so does the directional derivative $d_{-\mathbf{v}} f(\mathbf{a})$ and that it satisfies $d_{-\mathbf{v}} f(\mathbf{a})=-d_{\mathbf{v}} f(\mathbf{a})$.

Solution Consider the definition of $d_{-\mathbf{v}} f(\mathbf{a})$,

$$
\begin{aligned}
\lim _{t \rightarrow 0} \frac{f(\mathbf{a}+(-\mathbf{v}) t)-f(\mathbf{a})}{t} & =\lim _{t \rightarrow 0} \frac{f(\mathbf{a}-\mathbf{v} t)-f(\mathbf{a})}{t} \\
& =\lim _{s \rightarrow 0} \frac{f(\mathbf{a}+\mathbf{v} s)-f(\mathbf{a})}{-s} \text { putting } s=-t \\
& =-d_{\mathbf{v}} f(\mathbf{a}) .
\end{aligned}
$$

That the limit exists means that $d_{-\mathbf{v}} f(\mathbf{a})$ exists and further satisfies $d_{-\mathbf{v}} f(\mathbf{a})=$ $-d_{\mathbf{v}} f(\mathbf{a})$.
12. Using the definition of directional derivative calculate $d_{1}\left(x^{2} y\right)$ and $d_{2}\left(x^{2} y\right)$. Hence verify that these directional derivatives are the partial derivatives w.r.t x and y respectively.
Solution Let $f(\mathbf{x})=x^{2} y$ for $\mathbf{x}=(x, y)^{T} \in \mathbb{R}^{2}$. By definition $d_{1} f(\mathbf{x})=$ $d_{\mathbf{e}_{1}} f(\mathbf{x})$ so

$$
\begin{aligned}
d_{1} f(\mathbf{x}) & =\lim _{t \rightarrow 0} \frac{1}{t}\left(f\left(\mathbf{x}+t \mathbf{e}_{1}\right)-f(\mathbf{x})\right) \\
& =\lim _{t \rightarrow 0} \frac{1}{t}\left((x+t)^{2} y-x^{2} y\right)=\lim _{t \rightarrow 0} \frac{1}{t}\left(2 t x y+t^{2} y\right) \\
& =2 x y=\frac{\partial}{\partial x}\left(x^{2} y\right)=\frac{\partial}{\partial x} f(\mathbf{x}) .
\end{aligned}
$$

Similarly, $d_{2} f(\mathbf{x})=d_{\mathbf{e}_{2}} f(\mathbf{x})$ so

$$
\begin{aligned}
d_{2} f(\mathbf{x}) & =\lim _{t \rightarrow 0} \frac{1}{t}\left(f\left(\mathbf{x}+t \mathbf{e}_{2}\right)-f(\mathbf{x})\right) \\
& =\lim _{t \rightarrow 0} \frac{1}{t}\left(x^{2}(y+t)-x^{2} y\right)=\lim _{t \rightarrow 0} \frac{1}{t}\left(x^{2} t\right) \\
& =x^{2}=\frac{\partial}{\partial y}\left(x^{2} y\right)=\frac{\partial}{\partial y} f(\mathbf{x}) .
\end{aligned}
$$

13. Find the partial derivatives of the following functions:
i. $\quad f: U \rightarrow \mathbb{R}, \mathbf{x} \mapsto x \ln (x y) \quad$ where $U=\left\{\mathbf{x} \in \mathbb{R}^{2}: x y>0\right\}$;
ii. $\quad f: \mathbb{R}^{3} \rightarrow \mathbb{R}, \mathbf{x} \rightarrow\left(x^{2}+2 y^{2}+z\right)^{3}$;
iii. $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, \mathbf{x} \rightarrow|\mathbf{x}|$ for $\mathbf{x} \neq \mathbf{0}$. What goes wrong when $\mathbf{x}=\mathbf{0}$?

Hint In Part iii write out the definition of $|\mathbf{x}|$.

Solution i.

$$
\frac{\partial f}{\partial x}(\mathbf{x})=\ln (x y)+1 \quad \text { and } \quad \frac{\partial f}{\partial y}(\mathbf{x})=\frac{x}{y}
$$

ii.

$$
\begin{gathered}
\frac{\partial f}{\partial x}(\mathbf{x})=6 x\left(x^{2}+2 y^{2}+z\right)^{2}, \quad \frac{\partial f}{\partial y}(\mathbf{x})=12 y\left(x^{2}+2 y^{2}+z\right)^{2} \\
\frac{\partial f}{\partial z}(\mathbf{x})=3\left(x^{2}+2 y^{2}+z\right)^{2}
\end{gathered}
$$

iii As suggested, write out $|\mathbf{x}|$ in terms of its coordinates as

$$
|\mathbf{x}|^{2}=\sum_{j=1}^{n}\left(x^{j}\right)^{2} . \quad \text { Then } 2|\mathbf{x}| \frac{\partial|\mathbf{x}|}{\partial x^{i}}=2 x^{i}, \text { that is } \frac{\partial f}{\partial x^{i}}(\mathbf{x})=\frac{x^{i}}{|\mathbf{x}|},
$$

for $\mathbf{x} \neq \mathbf{0}$. To see what goes wrong when $\mathbf{x}=\mathbf{0}$ return to the definition of partial derivative. For any $1 \leq i \leq n$,

$$
\frac{\partial f}{\partial x^{i}}(\mathbf{0})=\lim _{t \rightarrow 0} \frac{f\left(\mathbf{0}+t \mathbf{e}_{i}\right)-f(\mathbf{0})}{t}=\lim _{t \rightarrow 0} \frac{\left|t \mathbf{e}_{i}\right|}{t}=\lim _{t \rightarrow 0} \frac{|t|}{t},
$$

which does not exist; the left hand side and right hand side limits are different.
14. Define the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by

$$
f(\mathbf{x})=\frac{x^{2} y}{x^{2}+y^{2}} \quad \text { if } \quad \mathbf{x} \neq \mathbf{0} ; \quad f(\mathbf{0})=0
$$

This as been previously seen in Question 11iii on Sheet 1.
i. Prove that f is continuous at $\mathbf{0}$.
ii. Find the partial derivatives of f at $\mathbf{0}$. (Hint return to the definition of derivative.)
iii. Prove that $d_{\mathbf{v}} f(\mathbf{0})$ exists for all unit vectors \mathbf{v}, and, in fact, equals $f(\mathbf{v})$.

Solution i

$$
\begin{aligned}
\lim _{\mathbf{x} \rightarrow \mathbf{0}} f(\mathbf{x}) & =0 \quad \text { by Question 11iii on Sheet } 1 \\
& =f(\mathbf{0})
\end{aligned}
$$

by the definition of f. Hence f is continuous at $\mathbf{0}$.
ii The partial derivative w.r.t x is $d_{\mathbf{e}_{1}} f(\mathbf{0})$, if it exists. By definition this is

$$
\lim _{t \rightarrow 0} \frac{f\left(\mathbf{0}+t \mathbf{e}_{1}\right)-f(\mathbf{0})}{t}=\lim _{t \rightarrow 0} \frac{t^{2} 0}{t^{2}+0^{2}}=0
$$

Since the limit exists the partial derivative exists and

$$
\frac{\partial f}{\partial x}(\mathbf{0})=0
$$

Similarly

$$
\lim _{t \rightarrow 0} \frac{f\left(\mathbf{0}+t \mathbf{e}_{2}\right)-f(\mathbf{0})}{t}=\lim _{t \rightarrow 0} \frac{0^{2} t}{0^{2}+t^{2}}=0, \quad \text { so } \quad \frac{\partial f}{\partial y}(\mathbf{0})=0
$$

iii. To find the directional derivatives of f at $\mathbf{0}$ in the direction of the unit vector \mathbf{v} write $\mathbf{v}=(u, v)^{T}$. Then

$$
f(\mathbf{0}+t \mathbf{v})=f\left(\binom{t u}{t v}\right)=\frac{(t u)^{2} t v}{t^{2}\left(u^{2}+v^{2}\right)}=t \frac{(u)^{2} v}{u^{2}+v^{2}}=t f(\mathbf{v}) .
$$

Thus

$$
\lim _{t \rightarrow 0} \frac{f(\mathbf{0}+t \mathbf{v})-f(\mathbf{0})}{t}=f(\mathbf{v})
$$

Since the limit exists $d_{\mathbf{v}} f(\mathbf{0})$ exists and further, $d_{\mathbf{v}} f(\mathbf{0})=f(\mathbf{v})$.
15. Define the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by

$$
f(\mathbf{x})=\frac{x y}{x^{2}+y^{2}} \quad \text { if } \quad \mathbf{x} \neq \mathbf{0} ; \quad f(\mathbf{0})=0
$$

It was shown in Question 11ii on Sheet 1 that f does not have a limit at $\mathbf{0}$ and so is not continuous at $\mathbf{x}=\mathbf{0}$.
i. Show that, nonetheless, the partial derivatives of f exist at $\mathbf{0}$.
ii. Prove that for all unit vectors $\mathbf{v} \neq \mathbf{e}_{1}$ or \mathbf{e}_{2} the directional derivative $d_{\mathbf{v}} f(\mathbf{0})$ does not exist.

This example illustrates the point that

$$
\forall i, d_{i} f(\mathbf{a}) \text { exists } \nRightarrow \forall \mathbf{v}, d_{\mathbf{v}} f(\mathbf{a}) \text { exists }
$$

Solution i. Consider

$$
\lim _{t \rightarrow 0} \frac{f\left(\mathbf{0}+t \mathbf{e}_{1}\right)-f(\mathbf{0})}{t}=\lim _{t \rightarrow 0} \frac{t \times 0}{|t|^{2} t}=\lim _{t \rightarrow 0} 0=0 .
$$

Hence $\partial f(\mathbf{0}) / \partial x=0$. Similarly $\partial f(\mathbf{0}) / \partial y=0$.
ii. To find the directional derivatives of f at $\mathbf{0}$ in the direction of the unit vector \mathbf{v} write $\mathbf{v}=(u, v)^{T}$. Then

$$
f(\mathbf{0}+t \mathbf{v})=f\left(\binom{t u}{t v}\right)=\frac{(t u) t v}{t^{2}\left(u^{2}+v^{2}\right)}=\frac{u v}{u^{2}+v^{2}}=f(\mathbf{v})
$$

Thus

$$
\lim _{t \rightarrow 0} \frac{f(\mathbf{0}+t \mathbf{v})-f(\mathbf{0})}{t}=\lim _{t \rightarrow 0} \frac{f(\mathbf{v})}{t}
$$

which does not exist unless $f(\mathbf{v})=0$ i.e. if either u or $v=0$ which is the same as $\mathbf{v}=\mathbf{e}_{2}$ or \mathbf{e}_{1} respectively.

Solutions to Additional Questions 3

16. The Product Rule for directional derivatives

i. Assume for the scalar-valued functions $f, g: U \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$ that the directional derivatives $d_{\mathbf{v}} f(\mathbf{a}), d_{\mathbf{v}} g(\mathbf{a})$ exist for some $\mathbf{a} \in U, \mathbf{v} \in \mathbb{R}^{n}$. Prove that the directional derivative $d_{\mathbf{v}}(f g)(\mathbf{a})$ exists and satisfies

$$
d_{\mathbf{v}}(f g)(\mathbf{a})=f(\mathbf{a}) d_{\mathbf{v}} g(\mathbf{a})+g(\mathbf{a}) d_{\mathbf{v}} f(\mathbf{a}) .
$$

ii Use Part i with the result of Question 5 to independently check your answer to Question 4.

Hint in Part i no new ideas are needed; look back to last year at proofs for differentiating products of functions.

Solution i. Consider

$$
\begin{aligned}
\lim _{t \rightarrow 0} & \frac{f g(\mathbf{a}+\mathbf{v} t)-f g(\mathbf{a})}{t} \\
\quad & =\lim _{t \rightarrow 0} \frac{f(\mathbf{a}+\mathbf{v} t) g(\mathbf{a}+\mathbf{v} t)-f(\mathbf{a}) g(\mathbf{a})}{t} \\
& =\lim _{t \rightarrow 0} \frac{(f(\mathbf{a}+\mathbf{v} t)-f(\mathbf{a})) g(\mathbf{a}+\mathbf{v} t)+(g(\mathbf{a}+\mathbf{v} t)-g(\mathbf{a})) f(\mathbf{a})}{t} .
\end{aligned}
$$

Here we have used the idea of 'adding in zero', namely $-f(\mathbf{a}) g(\mathbf{a}+\mathbf{v} t)+$ $g(\mathbf{a}+\mathbf{v} t) f(\mathbf{a})$. So

$$
\begin{aligned}
\lim _{t \rightarrow 0} \frac{f g(\mathbf{a}+\mathbf{v} t)-f g(\mathbf{a})}{t}= & \lim _{t \rightarrow 0} \frac{(f(\mathbf{a}+\mathbf{v} t)-f(\mathbf{a})) g(\mathbf{a}+\mathbf{v} t)}{t} \\
& +\lim _{t \rightarrow 0} \frac{(g(\mathbf{a}+\mathbf{v} t)-g(\mathbf{a})) f(\mathbf{a})}{t}
\end{aligned}
$$

Here we have used the Sum Rule for limits (Question 5 on Sheet 1), only allowed if the two individual limits exist. We will see below that they do. Continuing, using the Product Rule for limits,

$$
\begin{align*}
\lim _{t \rightarrow 0} \frac{f g(\mathbf{a}+\mathbf{v} t)-f g(\mathbf{a})}{t}= & \lim _{t \rightarrow 0} \frac{f(\mathbf{a}+\mathbf{v} t)-f(\mathbf{a})}{t} \lim _{t \rightarrow 0} g(\mathbf{a}+\mathbf{v} t) \\
& +f(\mathbf{a}) \lim _{t \rightarrow 0} \frac{g(\mathbf{a}+\mathbf{v} t)-g(\mathbf{a})}{t} \\
= & d_{\mathbf{v}} f(\mathbf{a}) g(\mathbf{a})+f(\mathbf{a}) d_{\mathbf{v}} g(\mathbf{a}) . \tag{1}
\end{align*}
$$

Here we have used the fact that $d_{\mathbf{v}} g(\mathbf{a})$ exists implies that $g(\mathbf{a}+\mathbf{v} t)$, as a function of t is continuous at $t=0$ (Question 9). That the limit exists proves that $d_{\mathbf{v}}(f g)(\mathbf{a})$ exists. The required formula for it follows from (1).
ii. The function f of Question 4 is $f(\mathbf{x})=x y^{2} z=(x y)(y z)=f^{1}(\mathbf{x}) f^{2}(\mathbf{x})$, where f^{1} and f^{2} are the two component functions of the vector-valued function in Question 5. The a and \mathbf{v} are the same in both questions. From Question 5 we find $d_{\mathbf{v}} f^{1}(\mathbf{a})=-2 / \sqrt{6}$ and $d_{\mathbf{v}} f^{2}(\mathbf{a})=-8 / \sqrt{6}$. Also $f^{1}(\mathbf{a})=3$ and $f^{2}(\mathbf{a})=-6$. Therefore, by part i.,

$$
d_{\mathbf{v}} f(\mathbf{a})=-\frac{2}{\sqrt{6}} \times(-6)-3 \times \frac{8}{\sqrt{6}}=-2 \sqrt{6},
$$

which hopefully confirms your answer to Question 4.
17. Extra questions for practice From first principles calculate the directional derivatives of the following functions.
i. $\mathbf{f}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}, \mathbf{x} \mapsto(x+y, x-y, x y)^{T}$, at $\mathbf{a}=(2,-1)^{T}$ in the direction $\mathbf{v}=(1,-2)^{T} / \sqrt{5}$,
ii. $\mathbf{g}: \mathbb{R} \rightarrow \mathbb{R}^{2}, x \mapsto\left(x+1, x^{2}-2\right)^{T}$, at $a=1$ in the direction of $v=-1$,
iii. $h \circ \mathbf{f}: \mathbb{R}^{2} \rightarrow \mathbb{R}$, with \mathbf{f} as in part i , and $h(\mathbf{x})=x y^{2} z$ for $\mathbf{x} \in \mathbb{R}^{3}$, at $\mathbf{a}=(2,-1)^{T}$ in the direction $\mathbf{v}=(1,-2)^{T} / \sqrt{5}$,
iv. $\quad \mathbf{f} \circ \mathbf{g}: \mathbb{R} \rightarrow \mathbb{R}^{3}$ at $a=1$ in the direction of $v=-1$.

Solution i. Firstly,

$$
\mathbf{a}+t \mathbf{v}=\binom{2+t / \sqrt{5}}{-1-2 t / \sqrt{5}} .
$$

So

$$
\mathbf{f}(\mathbf{a}+t \mathbf{v})=\left(\begin{array}{c}
1-t / \sqrt{5} \\
3+3 t / \sqrt{5} \\
(2+t / \sqrt{5})(-1-2 t / \sqrt{5})
\end{array}\right) \quad \text { and } \quad \mathbf{f}(\mathbf{a})=\left(\begin{array}{c}
1 \\
3 \\
-2
\end{array}\right)
$$

Hence

$$
\begin{aligned}
\frac{\mathbf{f}(\mathbf{a}+t \mathbf{v})-\mathbf{f}(\mathbf{a})}{t} & =\frac{1}{t}\left(\begin{array}{c}
-t / \sqrt{5} \\
3 t / \sqrt{5} \\
-5 t / \sqrt{5}-2 t^{2} / 5
\end{array}\right)=\left(\begin{array}{c}
-1 / \sqrt{5} \\
3 / \sqrt{5} \\
-5 / \sqrt{5}-2 t / 5
\end{array}\right) \\
& \rightarrow \frac{1}{\sqrt{5}}\left(\begin{array}{r}
-1 \\
3 \\
-5
\end{array}\right) .
\end{aligned}
$$

as $t \rightarrow 0$. Since the limit exists $d_{\mathbf{v}} \mathbf{f}(\mathbf{a})$ exists and, further, $d_{\mathbf{v}} \mathbf{f}(\mathbf{a})=$ $(-1,3,-5)^{T} / \sqrt{5}$.
ii. Start with

$$
\mathbf{g}(a+t v)=\mathbf{g}(1-t)=\binom{2-t}{(1-t)^{2}-2}, \quad \text { so } \quad \mathbf{g}(a)=\binom{2}{-1}
$$

Then

$$
\frac{\mathbf{g}(a+t v)-\mathbf{g}(a)}{t}=\frac{1}{t}\binom{-t}{(1-t)^{2}-1}=\binom{-1}{-2+t} \rightarrow\binom{-1}{-2},
$$

as $t \rightarrow 0$. Since the limit exists $d_{\mathbf{v}} \mathbf{g}(\mathbf{a})$ exists and, further, $d_{\mathbf{v}} \mathbf{g}(\mathbf{a})=$ $(-1,-2)^{T}$.
iii. The composite function $h \circ \mathbf{f}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is given by

$$
\binom{x}{y} \stackrel{\mathrm{f}}{\mapsto}\left(\begin{array}{c}
x+y \\
x-y \\
x y
\end{array}\right) \stackrel{h}{\mapsto}(x+y)(x-y)^{2} x y .
$$

Consider first

$$
\begin{aligned}
h \circ \mathbf{f}(\mathbf{a}+t \mathbf{v}) & =h \circ \mathbf{f}\left(\binom{2+t / \sqrt{5}}{-1-2 t / \sqrt{5}}\right) \\
& =\left(1-\frac{t}{\sqrt{5}}\right)\left(3+\frac{3 t}{\sqrt{5}}\right)^{2}\left(2+\frac{t}{\sqrt{5}}\right)\left(-1-\frac{2 t}{\sqrt{5}}\right)
\end{aligned}
$$

In particular $h \circ \mathbf{f}(\mathbf{a})=-18$. Use the big O-notation, seen in the solution to Question 4 , worrying only about the constant and t terms. Also, to ease
notation, write $y=t / \sqrt{5}$ and expand

$$
\begin{aligned}
(1-y)(3+3 y)^{2}(2+y)(-1-2 y) & =9(1-y)(1+y)^{2}\left(-2-5 y+O\left(y^{2}\right)\right) \\
& =9(1-y)\left(1+2 y+O\left(y^{2}\right)\right)\left(-2-5 y+O\left(y^{2}\right)\right) \\
& =9\left(1+y+O\left(y^{2}\right)\right)\left(-2-5 y+O\left(y^{2}\right)\right) \\
& =9\left(-2-7 y+O\left(y^{2}\right)\right)
\end{aligned}
$$

Thus

$$
h \circ \mathbf{f}(\mathbf{a}+t \mathbf{v})=-18-63 \frac{t}{\sqrt{5}}+O\left(t^{2}\right) .
$$

Hence

$$
\begin{aligned}
\frac{h \circ \mathbf{f}(\mathbf{a}+t \mathbf{v})-h \circ \mathbf{f}(\mathbf{a})}{t} & =\frac{1}{t}\left(\left(-18-63 \frac{t}{\sqrt{5}}+O\left(t^{2}\right)\right)-(-18)\right) \\
& =-\frac{63}{\sqrt{5}}+O(t) \rightarrow-\frac{63}{\sqrt{5}}
\end{aligned}
$$

as $t \rightarrow 0$. Since the limit exists $d_{\mathbf{v}}(h \circ f)(\mathbf{a})$ exists and, further, $d_{\mathbf{v}}(h \circ \mathbf{f})(\mathbf{a})=$ $-63 / \sqrt{5}$.
iv. The composite function $\mathbf{f} \circ \mathbf{g}: \mathbb{R} \rightarrow \mathbb{R}^{3}$ is given by

$$
x \stackrel{\mathrm{~g}}{\mapsto}\binom{x+1}{x^{2}-2} \stackrel{\mathrm{f}}{\mapsto}\left(\begin{array}{c}
x^{2}+x-1 \\
-x^{2}+x+3 \\
\left(x^{2}-2\right)(x+1)
\end{array}\right) .
$$

Then

$$
(\mathbf{f} \circ \mathbf{g})(a+t v)=(\mathbf{f} \circ \mathbf{g})(1-t)=\left(\begin{array}{c}
t^{2}-3 t+1 \\
-t^{2}+t+3 \\
-t^{3}+4 t^{2}-3 t-2
\end{array}\right) .
$$

In particular $(\mathbf{f} \circ \mathbf{g})(a)=(1,3,-1)^{T}$. Thus

$$
\frac{(\mathbf{f} \circ \mathbf{g})(a+t v)-(\mathbf{f} \circ \mathbf{g})(a)}{t}=\left(\begin{array}{c}
t-3 \\
-t+1 \\
-t^{2}+4 t-3
\end{array}\right) \rightarrow\left(\begin{array}{r}
-3 \\
1 \\
-3
\end{array}\right)
$$

as $t \rightarrow 0$. Since the limit exists $d_{\mathbf{v}}(\mathbf{f} \circ \mathbf{g})(a)$ exists and, further, $d_{\mathbf{v}}(\mathbf{f} \circ \mathbf{g})(a)=$ $(-3,1,-3)^{T}$.
18. Some important functions from the course are

- the projection functions $p^{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}, \mathbf{x} \mapsto x^{i}$;
- the product function $p: \mathbb{R}^{2} \mapsto \mathbb{R}, \mathbf{x}=(x, y)^{T} \mapsto x y$ and
- the quotient function $q: \mathbb{R} \times \mathbb{R}^{\dagger} \rightarrow \mathbb{R}, \mathbf{x}=(x, y)^{T} \mapsto x / y$.

Find $d_{\mathbf{v}} p^{i}(\mathbf{a}) ; d_{\mathbf{v}} p(\mathbf{a})$ for $\mathbf{a}, \mathbf{v} \in \mathbb{R}^{2}$ and $d_{\mathbf{v}} q(\mathbf{a})$ for $\mathbf{a} \in \mathbb{R} \times \mathbb{R}^{\dagger}$ and $\mathbf{v} \in \mathbb{R}^{2}$.
Solution For $\mathbf{a}, \mathbf{v} \in \mathbb{R}^{n}$ we have $d_{\mathbf{v}} p^{i}(\mathbf{a})=v^{i}$. With $\mathbf{a}=(a, b)^{T}$ and $\mathbf{v}=(u, v)^{T}$ we have $d_{\mathbf{v}} p(\mathbf{a})=u b+v a$ and $d_{\mathbf{v}} q(\mathbf{a})=(u b-v a) / b^{2}$.

